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ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its
depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell
deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we
performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root
development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged
with a dose of c-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that
AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the
differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings
and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets.
Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression
characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The
hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as
those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and
signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints.
Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin
deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of
prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated
cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription
burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in
atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish
IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of
the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially
overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR
are also discussed.
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INTRODUCTION
DNA damage recovery is key to cell life because maintaining

genome integrity is critical for cell and organism health and

reproduction. Therefore, identifying the genetic and biochemical

processes leading to tuned DNA repair and cell recovery after

damage is for understanding cell function and survival [1]. A large

spectrum of DNA lesions occur during physiologic processes or in

the presence of toxic external agents, such as IR, which induces

clusters of damage including oxidized bases, abasic sites, inter-

strand crosslinks, single-strand breaks (SSBs), and double-strand

breaks (DSBs). When left unrepaired or misrepaired, such lesions

usually cause cell death, cancer, or genetic diseases [2]. DNA

lesions are repaired by several different mechanisms involving

numerous mechanistically and functionally diverse DNA repair

protein superfamilies [3]. Ionizing radiation-induced DNA lesions

[4], such as oxidized bases and SSBs, are repaired by base and

nucleotide excision or encompassed by translesion synthesis.

Double-strand breaks activate either the predominant non-

homologous-end-joining (NHEJ) repair, which joins free DNA

ends and is DNA-protein kinase-dependent in mammals, or

homologous recombination repair (HR), which utilizes sister chro-

matids as a source of undamaged DNA templates for homologous

pairing of DNA sequences [5,6]. Joined repair mechanisms are not

mutually exclusive due to the complex processing of lesions such as

interstrand crosslink [7] or multiple base lesions that can be

processed through subpathways for NHEJ [8], and can be species-

specific. DNA lesions trigger signalling cascades through activating

checkpoint proteins that stop or delay cell cycle progression, thus

allowing DNA repair to take place through various pathways (i.e.,

HR mainly in the S-G2 phase through inhibition of replication,
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and NHEJ mainly in the G0-G1 phase) [9–11]. The Ataxia

Telangiectasia Mutated (ATM) kinase is an essential checkpoint

protein that is specifically activated by DNA DSBs and not by

SSBs, even at numbers that relax chromatin supercoiling [12].

ATM kinase also mediates cell cycle checkpoints and DSB repair

by HR or NHEJ, depending on the DSB end structure and on the

cell cycle at the time of damage [13,14]. Accumulating evidence in

yeast and human cells indicates that DSB ends are sensed directly

by the MRN protein complex (MRE11, RAD50, NBS1), which

binds DNA, unwinds the ends, and recruits ATM via NBS1,

a process that correlates with ATM activation. The respective role

of MRN proteins and other factors depending on the chromatin

alteration in the two-step mechanism of ATM stimulation,

however, is not yet fully understood [15–18]. Activated ATM

kinase activates a checkpoint response, including subsequent

aggregation of DNA repair proteins, and phosphorylates a large

number of substrates depending on the number of DSBs

[17,19,20]. The 30 to 50 ATM phosphorylation targets so far

reported include proteins involved in DNA repair (BRCA1; the

DNA-metabolizing proteins Mre11 and NBS1) and in checkpoint

control and apoptosis (CHK1 and CHK2, p53). These phosphor-

ylation targets activate cyclin-dependent kinase (CDK) inhibitor

p21, and inhibit cyclinA/cyclinE/CDK2 complexes and Polo-

kinase, making ATM the master coordinator of G1/S, intra-S,

and G2-M cell cycle transitions. Activated CHK2 and facilitators

such as BRCA1 drive the phosphorylation of downstream

substrates as well as upstream ATM substrates in a highly ordered

network [20,21]. Other ATM targets, such as the telomere factors

TRF1 and TRF2, regulators of translation initiation, and DNA

replication initiation proteins illustrate the wide variety of cellular

functions that are served by ATM to maintain genome integrity in

tissues. The role of ATM in the self-renewal capacity of

hematopoietic stem cells has led to further exploration of other

potential ATM-dependent cellular processes such as cell growth,

survival, and anti-tumor immune surveillance [22–25]. Indeed,

impairment of the human ATM kinase leads to an early onset,

progressive, neurodegenerative disorder that is transmitted as an

autosomal recessive disorder. AT-patients are hypersensitive to

DNA damage and are susceptible to cancer, immunodepression,

premature aging, progressive cerebellar ataxia, and oculocuta-

neous telangiectasia [26]. AT-cells fail to survive DNA damage

because of impaired signalling to DNA damage checkpoints and

a characteristic inability to arrest DNA synthesis after irradiation,

as well as from the inability to repair a small proportion of DSBs

[27]. Approximately 90% of the DSBs are repaired faster in AT-

cells than in wild-type (WT), except for the so called ‘‘slow repair

kinetics’’ DSBs [28]. Like AT-cells, cells deficient in the

ARTEMIS nuclease [29], a conserved component of NHEJ phos-

phorylated by ATM after irradiation, fail to repair the same

fraction of DSBs. It has been suggested that ATM directs the

processing of the ARTEMIS-dependent hairpin-capped ends

towards NHEJ and possibly HR, depending on the presence of

sister chromatids. Together these findings illustrate the crucial role

of the nuclear serine-threonine kinase ATM in signaling DSBs and

in coordinating the complex network of broad cellular functions

required to recover from radiation insult.

Another phosphatidyl inositol 3-kinase-like kinase family

member, the ATR kinase (ATM and Rad3-related), which has an

essential function in early mammalian development, has a key role

in the checkpoint response to replicative stress and DNA damage

caused by alkylating agents or UV-induced DNA lesions [30–32].

ATR kinase inhibits cell entry into mitosis and controls premature

chromatin condensation, a hallmark of mammalian cells, which

begin mitosis before completing DNA replication [33]. ATR is

recruited to replication protein A (RPA)-coated single-stranded

DNA (ssDNA) by ATR-interacting protein, which is present either

during replication as the helicase melts the DNA template and

Okazaki fragments are synthesized and joined, or when bulky

DNA lesions such as pyrimidine dimers occur. When loaded close

to DNA lesions by RAD17 onto the 9-1-1 complex (RAD9-RAD1-

HUS1), activated ATR blocks replication and phosphorylates

downstream substrates, leading to cell cycle arrest. At DSB sites,

the MRN complex proteins activate ATM-damaged DNA and the

ssDNA overhangs that are generated are then coated by an RPA

forming a nucleofilament on which ATR and the 9-1-1 complex

are subsequently loaded, resulting in replication fork arrest. In this

case, the checkpoint kinase CHK1, which is usually considered to

be an exclusive phosphorylation substrate of ATR in the absence

of DSBs, requires the combined action of both ATM and ATR

[34–37]. ATR also acts to repair by, for example, controlling the

ubiquitination of DNA repair-associated proteins such as

FANCD2, a crucial modification required for FANCD2 localiza-

tion to the DNA damage foci close to the recombinational repair

protein BRCA2 [38]. This explains why ATR colocalizes in

irradiated cells arrested at the S/G2 phases with ATM and the

recombinosome proteins that include proteins involved in HR and

replication, into subcompartmentalized complexes at DSB sites

surrounded by phosphorylated c-H2AX chromatin zones, a DSB

marker [39]. Even in the absence of external DNA damage, the

combined action of both kinases is hypothesized to mediate

replication regulation, sensing ongoing replication, and in turn

downregulating close and distal origins, and replicons through

inhibiting the S-phase kinases and the replicative MCM helicase

complex [40]. Indeed, ATR and ATM kinases prevent the

accumulation of DSBs and promote the restart of collapsed

replication forks [41]. The spatiotemporal dynamics of DNA

repair and checkpoint proteins that cooperate in large complexes

to survey genome integrity in eukaryotic cells suggests that one of

the roles of the checkpoint response is to reorganize the protein

composition of such complexes through the posttranslational

modifications of key components with the aim of rapidly reacting

to DNA damage [42]. Many proteins of the DNA damage

response are involved in both checkpoint and repair [43] and their

access to DNA damage sites largely depends on the dynamics of

the DNA and chromatin compaction/relaxation states [44,45].

ATM-deficient plants show no defects at the vegetative level,

but have fertility defects, are hypersensitive to IR and methyl

methane sulfonate, fail to early-upregulate DNA repair genes

RAD51 and Poly (ADP-ribose)-polymerase1 (PARP1), and delay

the upregulation of the NHEJ component ligase IV [46]. ATR-

deficient plants do not show somatic or meiotic defects, a divergent

characteristic compared to humans. ATR-deficient plants are

moderately sensitive to IR and the number of G2-arrested cells is

partially influenced as observed 8 hours after IR [47]. Among the

earliest cytologic events triggered by IR in plants, c-H2AX foci

have only been studied in M-phase nuclei, and occur in a dose-and

time-dependent manner [48]. At the molecular level, DNA DSBs

are visualized in WT plantlets [49]) treated with bleomycin,

a genotoxin that partially mimics IR. Genome sequencing and

systematic insertional mutagenesis have increased the number of

plant DNA repair functions identified by reverse genetics, or by

means of sterile mutants or altered somatic recombination rates

[50,51] but does not yet compare with yeast and mammalian data

[52], and therefore plant DNA metabolism and DNA damage-

signaling pathways are still poorly characterized in plants at the

biochemical level. Complementary approaches such as proteome

analysis of meiotic cells and genome wide-transcript profiling

analysis will help to characterize those functions in plants [53]. In
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response to genotoxins, there is strong expression of the G2/

mitotic cyclin B1;1 and conserved DNA repair genes such as

AtRAD51, AtBRCA1, or AtPARP1 (sometimes up to more than

100 fold [46,49,54–56]), making plant transcript profiling very

informative for identifying DNA damage responses. Similarly, the

constitutive expression of DNA metabolism genes in mutants

defective in chromatin metabolism [57,58] are indicators of DNA

repair pathways. This is in clear contrast to studies in mammals, in

which transcriptional induction of these genes is usually either

weakly documented or far much less active than is the post-

translational modification of the encoded protein [59,60]. In

addition, the presence of checkpoints at meiosis and/or after DNA

damage is still under debate in plants, although the cell cycle is

relatively well characterized [51]. Here, we analysed transcrip-

tional and developmental changes occurring after IR in WT and

atm to characterize the extent of the role of ATM in the DNA

damage response pathway in plants, and the link between

molecular and tissue phenotypes.

RESULTS

Sublethal IR promotes an early and transient arrest

of cell division that is differentially relaxed, auxin

increase, and vascular cell death
For several hours or days after heavy IR of seeds and seedlings,

developmentally arrested seedlings called ‘‘gamma plantlets’’ are

blocked outside of M phase at G2 and/or at G1/S as measured by

flow cytometry and cyclin B1;1-GUS activity [47,61–63]. Our aim

was to describe the sequence of events occurring in roots from the

time of IR to the time of growth restart in WT seedlings irradiated

with a sublethal dose of 100Gy c-rays. Those conditions trigger

early maximal upregulation of transcripts [54] and transiently

delay seedling growth [46], enabling us to study the link between

transcriptional change and subsequent development. Therefore,

the effect of IR on development was analyzed in live seedlings

carrying growth-associated markers. The lines included (i) cyclin

AtCYCB1;1-green fluorescent protein (GFP), which marks cells

arrested in late S through early M phases [64,65], and therefore

activation, persistence, and relaxation of IR-induced cell division

arrest; (ii) histone AtH2B-yellow fluorescent protein (YFP), a marker

of chromatin organization, DNA content, and nuclear morphol-

ogy, allowing us to visualize the relative evolution of cell DNA

content in the organ [66,67]; and (iii) DR5-GFP, a marker of

auxin response which typically can be used to reflect changes in

auxin content and distribution which are key regulators of organ

growth [68,69].

Stereomicroscopic observation and optical sectioning of living

seedling roots using confocal laser scanning microscopy indicated

that the number of cells accumulating cyclin B1-GFP in the whole

meristematic zone strongly increased during the first hour post-IR

with a peak at 3 to 5 h (Fig. 1-A), remained constant for

approximately 24 to 52 h, and then decreased towards the non-

irradiated root levels (Fig. S1). This finding indicated that cell

division was delayed from late S or late G2, i.e., the G2/M

transition for most meristematic cells, as previously reported in

gamma plantlets [47,62]. The arrest was earlier and transient,

however, consistent with a sublethal IR dose. Not all cells

accumulated CYCB1;1, suggesting that a subpopulation of cells

arrested at another cell cycle phase, i.e., at G1 and early S. One

day after IR, the meristematic zone marked by CYCB1;1-GFP

was nearly half that observed a couple of hours after IR and was

restricted to the region close to the quiescent center (QC) (Fig. 1-

A). The cells of the meristematic zone that have lost CYCB1;1

fluorescence, were abnormally elongated and enlarged in every

tissue, and were immediately adjacent to a set of cells including

stem cells that stayed arrested longer. This differential response

(Fig. 1-A) suggested a positive gradient of ‘‘IR-sensitive cells’’ from

the stem cells up to the elongation zone. In irradiated H2B-YFP,

the two times-lower density of cells within the first 300 mm of the

root tip (15 vs 30 cells) (Fig. 1-B), indicated a loss of the progressive

longitudinal and radial increase in nuclear size and number of

mitotic figures in the transition zone. Epidermis and endodermis

cells with high DNA content, which were located above the

division zone in controls, were close to the remaining meristematic

cells, which contained a lower DNA content (Fig. 1-B). Together,

these findings suggest that most of the early IR-arrested cells exit

Figure 1. Root tip morphology and expression of fluorescent markers of WT seedlings after IR. CLSM optical sections showing root tip
morphology and expression of cell cycle, nucleus size, and auxin markers. Superimposition of images showing GFP and YFP distribution (green) and
cell outlines stained with PI (red). Dying cells are bright red due to PI uptake. A.: Cyclin B1;1 time-course after IR. After 24 h, loss of the transition zone
results in a reduced meristematic zone still containing division-inactive cells next to a large zone of differentiated cells without CYCB1;1 expression. B.:
Distribution of Histone H2B-YFP-stained nuclei. In controls, the rectangle (enlarged in insert) shows (from bottom to top) typical examples of
condensed chromatin of G2-like nuclei, early prophase (loss of spherical shape) and metaphase plates. Circled areas show large differentiating cells
with high DNA content far from root tip in controls and close to root tip after IR. C.: Epifluorescence microscope image showing expression of DR5-
GFP in living root tips 24 h after IR. (Bars = 50 mm).
doi:10.1371/journal.pone.0000430.g001
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the cell cycle without further division within 1 to 2 d post-IR to

undergo accelerated differentiation. The range of DNA contents of

seedling roots oscillates between 2 C and 4 C, respectively, in G1

and G2 diploid or G1 tetraploid cells, up to 8 C and 16 C, in

endoreduplicated cells and the relative repartitioning of cells

between the phases depends on the ecotype and the development

stage [63,66,70]. Therefore, the distribution of cells between the

G1 and G2 phases estimated from the CYCB1;1-GFP pattern

(independent of DNA content) could not be superimposed with the

DNA content estimated by H2B-YFP. Instead, the relative

increase in the number of cells with a high DNA content in the

root tip after IR (Fig. 1-B), consistent with cytometry data [63,71],

might indicate that endoreduplication occurred in early IR-

arrested-and prematurely differentiating-cells. Protoxylem in that

subzone undergoes programmed cell death during differentiation

into metaxylem. If dead stele cells were occasionally observed in

controls, their number clearly increased after IR (Fig. 1-B and C),

therefore indicating an accelerated differentiation of protoxylem

and/or their differential sensitivity to IR compared to ground

tissue. Stretched and/or dead cells coincided with an auxin

increase in the provascular tissue without a change in the

accumulation pattern relative to vascular cells, as DR5-GFP

fluorescence was continuous along the stele (Fig. 1-C) when it was

restricted to the columella cells in controls. Both the premature

differentiation of root cells and increased vascular cell death might

trigger growth arrest due to changes in auxin homeostasis. The

auxin increase was subsequent to CYCB1;1 accumulation,

however, suggesting that early IR-activated cell cycle checkpoints

primarily determined growth arrest and were quickly followed by

changes in auxin distribution and response. Together, these data

indicate that transient root growth arrest for 1 to 2 d after

sublethal IR (Fig. S2) resulted from two main events: immediate

cell cycle arrest in the meristem zone (1–3 h post-IR), followed by

differentiation/enlargement of a majority of cells (1 d post-IR),

while a subset of cells corresponding to the stem cell zone were

arrested for a longer period of time before restart of growth.

Consistent with recent studies of Allium meristematic roots cells

that stop mitosis 4 to 5 h after IR and double the number of cells

at G2 for approximately 20 h before they restart growth 2 to 3 d

post-IR [71], these data demonstrate that the nearly immediate

cell response to IR is heterogeneous and results in complex

developmental patterns.

IR promotes early defects of root stem cell

maintenance that precede progressive meristem

consumption and death of the atm mutant
After root lengthening 2 to 3 d post-IR, radiosensitive atm mutants

were completely arrested, whereas WT roots had restarted growth

[46]. Longitudinal sections of fixed root meristems showed no

changes in tissue organization 5 h after IR in either atm or WT

(Fig. 2A–D). One day later, columella root cap and cortex/

endodermis initial cell numbers in irradiated WT were equivalent

to those in controls, showing periclinal division of initials and

indicating maintenance of the QC and stem cells, except for the

above reported premature differentiation of cells located far from

the initials (Fig. 2-E). On the other hand, in irradiated atm roots

early all initials had disappeared or were altered (Fig. 2 F–I) down

to only two QC cells immediately surrounded by differentiated

endodermis, cortex, and disorganized columella initials containing

starch granules. This phenotype is similar to the loss of division

capacity in columella initials that undergo differentiation after QC

ablation [72,73]. Nearly synchronous ectopic anticlinal, but no

periclinal, division of irradiated atm QC cells, lateral root cap, and

epidermis initials was also observed together with enlarged non-

dividing QC cells next to the other anticlinally dividing QC cell.

Wild-type plant QC cells occasionally self-renew to replenish

initials displaced from their position, rendering them hard to

detect. Therefore, ectopic anticlinal stem cell and QC cell division

cell together with the loss of columella initials indicated an early

loss of function of stem cells in irradiated atm and suggested

a combination of stem cell-restricting (in initials) and stem cell-

promoting (in 1 QC cell and initials) events. The stem cell-

promoting events were remarkably similar to those induced by

Figure 2. CLSM optical longitudinal sections of WT and atm stem cells and QC post-IR. Arrowheads point to QC cells and arrows on columella
initials. The drawing shows the QC, which contains cells that rarely divide in WT surrounded by initials of stele (brown), endodermis and cortex
(green), epidermis and lateral root cap (violet), and columella (pink). WT QC and initials have a normal structure after IR showing periclinally-
orientated cells (A, C, E). Anticlinal division of 1 QC cell occurred 1 d post-IR in atm (white arrowhead, F–I) but not 5 h after IR (D). QC cells were either
surrounded by dividing cortex and endodermis (green arrowhead) and columella (black arrowhead) initials (G) and/or differentiation of these initials
(green and white arrows, respectively) in atm (F–I). Bars = 50 mm.
doi:10.1371/journal.pone.0000430.g002
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overexpressing and silencing genes in the canonical retinoblasto-

ma-related (RBR) pathway [73]. The stem cell-restricting events

were similar to those observed after ectopic expression of CDKF;1,

which results in decreased CDKA;1 activity [74]. These observa-

tions suggest that the QC cannot fulfill positional signaling roles

and control of initials fate after IR in atm seedlings, and that ATM

likely controls decisive checkpoints for stem cell maintenance.

Confocal laser scanning microscopy images of root tip viability

confirmed the higher density of dead protoxylem cells in the atm

meristematic zone 2 d post-IR (Fig. 3-A). Irradiated roots were

bent and enlarged, and developed root hairs in closer proximity to

the tip, a hallmark of differentiation due to premature exiting of

the cell cycle. Wild-type root cells maintained an ordered structure

in the stem cell area, and developed lateral roots of the proper size

and shape, although only a few developed close to the tip, a pattern

likely linked to the above-mentioned disturbance of the auxin dose.

The major feature of irradiated atm was the progressive death of

meristematic and promeristematic cells (Fig. 4 b–d), ending with

a mass of apolar cells of abnormal size and shape. This phenotype

is similar to that of developmental mutants depleted in various

genes such as SHORT ROOT or cell cycle and growth-associated

genes (Fig. 3). Moreover, atm hardly developed lateral roots and

initiated improperly located primordia that usually aborted or

developed into abnormal roots (Fig. 3E). Thus, although lateral

root initiation per se occurred in atm, indicating its capacity to

divide for a while, the capacity of primordia to sustain both the cell

division and correct polarity required for a true novel organ was

lost. Such patterns are consistent with the elimination of cell cycle

checkpoints and suggest that an event subsequent to division was

responsible for the definitive failure of atm to recover from the IR

in primary and secondary roots. The late atm phenotype might also

be due to defective repair in addition to early cell cycle checkpoint

defects.

IR triggers a large wave of radiomodulated

transcripts that are strongly impaired in atm

seedlings
To describe the consequences of ATM depletion on transcrip-

tional changes occurring during cell division arrest post-IR,

genome-wide expression profiling of seedlings was performed

using the Complete Arabidopsis Transcriptome MicroArray

during the period covering the CYCB1;1 accumulation (see

Fig. 4-A). A total of 1710 genes that had a statistically significant

change in expression after IR (Bonferroni p-value#0.05) at least

once in WT or atm (Tables S1.1, S1.2) were distributed in K1–K8

clusters (Fig. S3-A). Gene radiomodulation in WT occurred as an

early wave starting just after IR and lasting approximately 3 h

with only approximately 10% of the genes still fluctuating 5 h

post-IR (Fig. 4-B andC). While a subset of genes was continuously

expressed over 3 or 5 h post-IR (K1), another subset followed

a biphasic regulation vs time (K3), indicating that seedling cells still

experienced differential gene cycling after IR. In addition to the

phase shift in gene cycling between control and irradiated

seedlings over time, the oscillation of a subset of transcripts might

also indicate differential cell reactivity to IR within seedlings (e.g.,

dividing vs differentiating, cotyledon vs root) and/or differential

transcript stability after IR. The transcriptional control of genes

was lost in atm (Fig. 4-D). The expression of only 35 genes was

upregulated in atm but the expression was still significantly lower

than that in WT and/or delayed (cluster K1), while 632 genes

were invariant (cluster K2) and 314 were inversely regulated

(cluster K3) in atm. Oscillation of a subset of genes was also

observed in atm, suggesting that transcript level oscillations per se

were independent of genotype. Whereas K1 and K2 genes

exclusively required ATM to be upregulated for 5 h after IR, the

inverse regulation of K3 genes and a subset of 110 genes

Figure 3. WT and atm root development time-course after IR. At the indicated times post-IR, seedlings were stained with PI and either FDA (green
cytoplasm) or sytogreen (green nuclei). A, G, D, J are CLSM optical longitudinal sections of FDA-stained roots, and the other images are fluorescence
micrographs. Arrows show abnormal (E) and incorrect positioning (F) of lateral roots in atm. (D) typical irradiated atm root, the morphology of which
is similar to short root, korrigan, shepherd, tonsoku, and brefedin A-treated scd1-1 mutants, propyzamide-treated WT, or cyclin B1;1 dominant negative
mutant (A) to (K) bars = 150 mm; (L) bar = 1500 mm. Red vertical bars indicate the lateral root cap zone, the size of which correlates with root meristem
survival.
doi:10.1371/journal.pone.0000430.g003
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exclusively upregulated in atm (K7) suggested that other factor(s)

acting concomitantly with ATM tend to repress or induce the

expression of gene subsets after IR. These observations also

applied to downregulated genes (clusters K4–K6, and K8).

Together, the data indicated that (i) the main effect of IR was to

immediately trigger the upregulation of a large number of genes

concomitantly with CYCB1.1 accumulation and division delay, (ii)

atm mutation resulted in attenuated, canceled, or reversed IR-

regulation of most transcripts, (iii) biphasic oscillation of a subset of

up- or down regulated transcripts concomitant with the contin-

uous expression of other genes, independently of atm mutation,

suggesting that seedling tissues have a differential response to IR.

Real time quantitative PCR (rt-qPCR) to validate array data

was performed for 51 randomly chosen genes, invariant, up-, or

downregulated (Table S1-primers). The highest ratios usually gave

higher-fold changes by rt-qPCR than by ratio-dependent calcula-

tions, and lower ratios around 1, theoretically indicating a 2-fold

change, gave values up to 8 times higher by rt-qPCR for some

genes (Fig. S4-A). The high stringency of the statistical treatment

according to Bonferroni criteria (Bonferroni p-values#0.05) was

confirmed for genes that were barely detected, such as PARP or

DNA polymerase e, or not detected (ku70, lig4, brca2) by

microarrays. These genes were upregulated 2 to 4-fold, as detected

by rt-qPCR, due to the higher sensitivity of the method. A

comparison of WT and atm samples also validated the microarray

data (Fig. S4-B), demonstrating that approximately 90% of the

transcript level increase was lost in the mutants and that various

genes had different oscillation patterns after IR. The levels of

transcript variation were close to those reported in studies on DNA

repair gene changes in yeast and Arabidopsis mutants [57,75], but

higher than those in human cells, whose levels change around 1.2

to 1.5-fold [59]. Because the statistical treatment provided highly

confident results even for minimal threshold ratio-values of

0.6560.1 (theoretical modulation of 1.5 fold), the direction of

gene regulation rather than the ratio values was considered for

further analysis.

IR triggers early transcriptome changes in

Arabidopsis roots, which are mainly ATM-dependent

and weakly ATR-dependent
Given the emergence of gene groups with complex transcription

profiles in seedlings, the differential sensitivity to IR and/or

asynchrony of the response of roots and cotyledons-shoot apical

meristems might be randomized within the seedlings examined.

Therefore, we looked for early radiomodulation of genes in WT

and atm with roots that provided a tissue homogeneous enough to

obtain more clear-cut transcriptional responses. The experimental

design shown in Fig. 5-A provided relative gene expression in both

genetic backgrounds before and after IR, as well as autovalidation

of the results (Fig. S3-B and C). From two independent experi-

ments performed with 200 and 100 roots, 664 and 1110 genes,

respectively, had at least one significant change in expression

under one of the four conditions (Tables S2.1 and S2.2), resulting

Figure 4. Radiomodulated genes in WT and atm seedlings over 5 h post-IR. There were 1713 genes with at least one statistically significant change
(Bonferroni p-value#0.05) in WT and/or atm seedlings. (A) : Experimental design for the time course of transcript profiling in WT and atm (genotype)
after IR. IR, irradiated seedlings; NIR, non-irradiated seedlings. (B) : Clustering by K-means with Genesis software (all other ratios with any Bonferroni p-
values). (C): Manual clustering (all ratios with Bonferroni p-value#0.05). Ratio scale is on top of each image. Genes of clusters K1–K8 are listed in
Tables S1.1 and Table S1.2. (K1–K3) : genes upregulated in WT, and either upregulated (K1), invariant (K2), or downregulated (K3) in atm. (K4–K6):
Genes downregulated in WT and either downregulated (K4), invariant (K5), or upregulated in atm (K6). (K7–K8): genes invariant in WT and either
upregulated (K7) or downregulated (K8) in atm. (D). Relative distribution of invariant (grey), up- (red), and downregulated (green) genes in WT and
atm. All unique genes are compiled in Table S3-A. The gene clustering methodology is described in Fig. S3.
doi:10.1371/journal.pone.0000430.g004
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in a set of 1457 genes (Table S3-A) and 317 genes that were

regulated in both experiments. This showed that increasing tissue

homogeneity and lowering the root population size increased the

detection sensitivity and/or indirectly confirmed cycling of gene

expression after IR. Genes showing the most technically relevant

changes were located in clusters M1 to M4 (Fig. 5-B). Clusters M1

and M2 displayed a high number of genes that were not

radiomodulated, but constitutively over-and under-expressed in

atm, indicating that atm has higher transcriptional activity than

WT. Clusters M3 and M4 included genes without differential

expression between WT and atm before IR and displayed 251 up-

and 83 downregulated genes, respectively, in WT, and invariant or

severely attenuated gene expression levels in atm. Genes that were

radiomodulated in only one experiment and/or in only one

sample instead of two (clusters M5–M8) had a more stochastic

expression that was likely related to the gene oscillations observed

in seedlings. For example, the largest cluster M5 cluster mainly

overlapped with the cluster K3 (Fig. S5-A), therefore confirming

the misregulation of genes in irradiated atm. M7 genes, which were

upregulated in WT and invariant in atm, behaved similarly to

cluster M3 genes when the ratios were examined (Table S2.2).

Therefore, they were associated with cluster M3 for further

analysis (M3–M7, Table S3-A). Together, the root experiments

confirmed all trends of gene expression observed in the seedling

experiments and extended and helped to distinguish the set of

genes whose radiomodulation was strictly ATM-dependent after

IR from those that were cycling abnormally.

Because the checkpoint kinase ATR controls G2 arrest in

Arabidopsis [47], a root experiment was performed with WT and an

atr mutant (Table S2.3, Fig. 5-C and D). A small set of IR-

invariant genes (R1) was expressed at higher levels in atr before IR,

indicating a slightly higher transcriptional activity in atr but

considerably lower than that in cluster M1 (Fig. 5-D). The key

feature was the occurrence of two large gene sets of either strongly

upregulated (cluster R2) or downregulated (cluster R5) genes that

were similarly radiomodulated in WT and atr. Cluster R2 included

cluster K1-M3 genes (Table S3-A), but a subset of them had

slightly attenuated expression in atr. Other cluster R2 genes did

not show a statistically relevant change in irradiated atr (Table S3-

B). They behaved like R3 and R4 genes, which were in lower

ratios in WT. As they had ratio-values close to the minimal

threshold value for detection, however, we concluded that their

IR-induced expression was attenuated rather than strictly in-

variant in atr. In addition, with a few cluster R1 genes, and no

clusters showing the diversity of regulation patterns that occurred

in the atm experiments, these data showed a weak effect of ATR

depletion in the early transcription response to IR compared to

ATM.

Figure 5. Radiomodulated genes in WT, atm, and atr roots 1 h after IR. (A and C) Experimental design of WT and atm (A), or atr (D) root transcript
profiling. Combinations of samples A–D are indicated on top of columns in Tables S2, S2.2, and S2.3. (B) Clustering of 1352 unique genes from two
independent biologic samples containing approximately 200 (expt.1) and 100 (expt.2) roots, whose average sizes was 7.1+/20.8 and 7.3+/20.9 mm
for atm and WT, respectively. (D) Clustering of 475 unique genes from one experiment done with 100 WT or atr roots. Clusters M and R unique genes
are listed in Table S3-A. The gene clustering methodology is described in Fig. S3.
doi:10.1371/journal.pone.0000430.g005
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The extent of overlap between genes IR-regulated in roots and

seedlings as well as the dependence on the number of experiments

to get a complete IR transcriptome is summarized in Fig. 6. This

representation does not highlight all reproducibility levels of gene

expression, as genes within root and seedling clusters that did not

overlap were either more than once or highly expressed. Therefore,

the transcriptome content was further analysed from data compiled

in Table S3-A. Cell cycle characteristics and distribution in

functional classes showed enhanced S- phase gene regulation and

reduced M-phase gene regulation in irradiated roots (Fig. S6-C),

consistent with the tissue distribution of proliferation (Fig. S6-B).

This coincided with an enrichment of metabolism genes in the aerial

part of the seedlings (Fig. S6-D–E), and was consistent with the low

division competence of cotyledons [76].

ATM mediates IR- induced expression of cell cycle

G2/M and G1/S checkpoints
Cell cycle indicators of proliferation arrest included downregulated

S-phase CYCA3;2, and mitotic and G2/M-phases activators, such

as cyclins B1;3, B1;4 B2;2, and A1;1, CDKB2;1; an APC activator,

AtCDC20.2; the kinesin-7 CENPE, the kinases AURORA1 and 2

and MAP3K14, and KNOLLE, which are hallmarks of highly

dividing plant organs [77]. Others encoded orthologs of spindle-

chromosome components that link the regulation of their attach-

ment to mitotic checkpoint signaling in vertebrate cell division,

such as AtEBC1, TPX2-like, a regulator of RanGTP gradient

(RanBP1), and the transient centromeric checkpoints AtBUB1 and

AtBUB3, providing further evidence of arrest outside of M-phase.

Cell cycle inhibitors, such as the known AtCcs52A1 [78], usually

expressed from late M until lateS-early G2 phases, were upregu-

lated, as well as novel genes such as the orthologues of NUP98,

a mouse temporal regulator of APC that maintains euploidy by

preventing premature separation of sister chromatids, and the

human mitotic checkpoint protein CHFR, a non-canonical

ubiquitin ligase that delays chromosome condensation by keeping

AURORA-A and-B inactive, but also inhibits the entry of CYCB1

in the nucleus, and therefore delays mitotic progression [79]. In

contrast to all other B-type cyclins that were downregulated,

CYCB1;1 was quickly induced slightly before protein accumulation

(up to 1.5 h post-IR, Table S1.1), and was later invariant, whereas

CYCB1;1-GFP protein accumulated for several hours (Fig. 1),

likely indicating transcriptional and posttranslational regulation.

Indeed, CYCB1;1 is the only B-type cyclin that, although

upregulated during cell cycle re-entry, does not show significant

subsequent changes during cell cycle progression [80,81]. In

addition, ectopic expression of CYCB1;1 under control of the

AtCDKA promoter, a G1/S-active CDK expressed uniformly

throughout the cell cycle, markedly accelerated plant growth

without altering development, raising the possibility of an

unknown CYCB1;1 function in the G1 phase [82]. This strongly

suggested that contrary to other B-type cyclins, CYCB1;1 is

positively regulated at S phase after IR, as its activator of

quantitative expression TCP20 [83] was also upregulated by IR.

Together, with the plant CDK inhibitor KRP6 expressed at the

M/G1 boundary [81], two novel putative G1/S regulators,

orthologues of hGSPT1 (G1 to S phase transition protein 1), a cell

cycle regulator that interacts with RNAseL at translation

termination [84], and of hSYF2, a splicing factor of the Grap2

CYCD-interacting protein family AtGCIPp29 that inhibits activity

of the S-phase transcription factor (TF) hE2F1 [85], indicated IR-

induced activation of the G1/S checkpoint. KRP6 is highly

expressed in the roots, however, in both mitotically dividing and

Figure 6. Distribution of radiomodulated genes in roots and seedlings. Venn diagrams show the extent of overlap between roots [3 experiments
(M and R clusters)] and seedlings [8 experiments (K) clusters)]. (Red and green) : Up -and downregulated genes. (Blue): Genes with stochastic
expression in atm roots. Minimal cores of genes for which expression was lost in atm (diagrams on top) were extracted in Table S3-B as follows: Group
A included 74 (up) and 20 (down) genes regulated in all experiments; Group B (42 and 19 genes, respectively) and Group C (54 and 20 genes,
respectively) included genes regulated at least once in seedlings and at least once in roots; and Group D included 62 (up) and 5 (down) genes
regulated in root experiments only.
doi:10.1371/journal.pone.0000430.g006
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endoreduplicating cells and interacts with D-type cyclins [86]. It

binds more strongly to active CYCD2/CDKA;1 and CYCD2/

CDKB2;1 complexes than to their monomer components [87].

CDKA;1 and CDKB2;1 are expressed throughout the cell cycle, and

from early G2 to M, and CYD3;1 (not CYCD2) interacts with

CDKA to dominantly drive G1/S transition [77]. After IR, the

expression of CDKA and CYCDs was unchanged, while that of

CDKB2;1 decreased, suggesting that KRP6 inhibits cell cycle

progression at the G1/S and early G2/M transitions through

different mechanisms to block division after strong DNA damage

or in natural situations of increasing DSBs, like in meiosis [88].

Similarly IR-induced upregulation of the negative regulators of

CDKA;1 activity, WEE1 and PAS2, expressed at S-phase likely

reinforce division arrest. Indeed, the growth of PAS2OE or

WEE1OE plants is strongly inhibited as cell division is delayed

from G2/M to early M, resulting in enlarged, highly vacuolated

root cells [89,90]. In this context, upregulation of ATGR1, whose

elevated intracellular levels are associated with changes between

the G1/S and M phases of the cell cycle that trigger somatic cells

to enter the endoreduplication cycle, and/or cell enlargement

[91], as AtCcs52A1 and non degradable CYCB1;1 do [92,93],

might be an important S-phase regulator after DNA damage.

Altogether, the repression of M and S phase activators and the

increasing levels of KRP6 and CYCB1 proteins suggest that cells

likely arrested both at S and G2 through activation of a complex

network, and that transition from proliferation to endoreduplica-

tion might have occurred in irradiated seedlings. The finding that

these genes were essentially invariant in atm after IR indicates that

ATM-DNA damage-mediated cell cycle checkpoints influence the

capacity of mutants to survive.

ATM controls IR-induced upregulation of

Arabidopsis genes involved in DNA replication,

repair, and recombination and chromatin

metabolism
DNA synthesis-associated genes were downregulated, including

a DNA replication factor RPA, 12 histones (including several H4-

type histones [81]), and AtMCM4, which is a target of the DNA

replication block checkpoint system in human cells [94]. IR-

upregulated genes (Table S3-A) included major mediators of DNA

repair by HR such as BRCA2, BRCA1, RAD51, AHP2, MND1,

and RAD54; the homologues of hFANCD2 [95] and hFANCJ/

BACH1 helicase; the ssDNA binding protein RPA1; and RAD17.

Novel genes might identify putative proteins related to cell cycle

checkpoints or DNA repair, such as BRCT-or FHA-containing

genes [32], or a predicted DNA topoisomerase-related gene that

encodes a protein structurally close to TONSOKU-ASSOCIAT-

ED 1 (TSA-1-like), which is involved in the DNA damage

response, epigenetic silencing, and proper cell arrangement in

meristems [96]. The novel genes also included AtRAD21.1,

AtSHUGOSHIN1-like, a sensor of tension between sister chro-

matids, the condensin/cohesin AtDELANGIN-like, and two proteins

with similarities with non-structural maintenance of chromosome

subunits of the HR-SMC5-6 complex (SpNse1 and SpNse4/

ScRad62) that collaborate in repairing DNA damage and

maintaining chromosome integrity during replication [97–101].

The IR-induced upregulation of TK, 3 subunits of ribonucleotide

reductase, the POLe catalytic subunit AtPOL2, 2 subunits of the

processive DNA POLd, and AtPOLK involved in translesion

synthesis [102,103], confirmed the mobilization of replicational

repair proteins, which often interact with RAD17 to stimulate

DNA repair activities in human cells [104]. Moreover, the

upregulation of the DNA replication licensing factor MCM3,

which interacts with RAD51 and is directly involved in ATM/

ATR checkpoints in mammals [32,105,106], might indicate the

activation of cell cycle G1 and/or S checkpoints. In addition, the

upregulation of PARP1 and PARG, involved in the control of

protein ADP-ribosylation at sites of damaged DNA and of the

balance between NHEJ and HR in mammals [107,108],

AtXRCC1 putatively involved in SSB repair, or AtCEN2,

a modulator of HR/NER [109], indicates the occurrence of IR-

induced DNA lesions other than DSBs (SSBs and/or multiple-base

damage [4]). Remarkably, the expression of the NHEJ compo-

nents Atku70 and AtligIV increased 2 to 4-fold in WT, which was

barely detectable in microarray analysis and similar to that

induced after a 10-fold lower IR dose [110], suggesting poor IR-

regulation compared to HR genes in WT. As their expression is

only delayed in atm [46], NHEJ is likely functional in the mutant.

The tebichi-1 mutant, which is defective in a DNA POL-helicase

close to human translesion synthesis POLs, constitutively ex-

pressed HR and S-G2 genes (Table S3-C). This shows that plants

defective in non-HR functions shift towards expression of HR

functions, as shown by the very high induction of BRCA1 and

RAD51 in bleomycin-treated Atku80 mutants [55]. Finally, the

upregulation of the DNA methylase DRM1 and the helicase

hNDHII-like that colocalizes at DNA damage-induced sites of

arrest transcription and replication [111] suggests that transcrip-

tion domains were reprogrammed.

The concomitant upregulation of several genes encoding

chromatin-associated proteins indicated a persistent IR-induced

alteration of chromatin conformation, a hallmark of cancer or

irradiated human cells [43]. They encoded high mobility group

proteins (HMGs), several uncharacterized proteins that harbor

chromatin-specific modules (PWWP, SWIB, AGENET, BAH,

SET), and notably, the histone methylase AtASHH and the

GCN5 acetylase AtNSI, which modify histones and virus coat

proteins [112]. Radiomodulation of several regulators of chroma-

tin condensation (RCC1) and TOM proteins that bind to viral

replication proteins [113], telomere repeat factors-like AtTRFL10

and 3, and a GANP family member, which facilitates the nuclear

localization of hMCM3, illustrates the broad range of modifica-

tions of DNA, histones, and non-histone proteins that occur after

DNA damage. Concomitantly, HMGB6 and 3 histone deacety-

lases (HDT1/2/4) that repress transcription through interaction

with TFs [114], and a mutator-like transposase and 2 transposons

were downregulated, suggesting increased decondensation sectors

of chromatin and changes in methylation patterns leading to

transcription silencing [115]. ARP4, the mediator of NuA4 histone

acetyl transferase (HAT) remodeling complex that is recruited at

DSB sites to remodel and open chromatin for DNA repair [116],

and HAG4, a putative homologue of hTip60 acetylase, were

oppositely regulated but not invariant in atm, suggesting indirect

ATM-regulation. Arabidopsis mutants impaired in chromatin-

associated factor 1 (CAF-1) constitutively express 20 IR-induced

upregulated genes, including CYCB1;1, and mainly DNA HR

genes (Table S3-C). CAF-1 deposits a specific histone variant in

nucleosomes that is active primarily at the time of DNA synthesis

(replicative or repair), suggesting that IR might cause similar

defects in DNA and chromatin structure. E2Fa-DPaOE seedlings

constitutively expressed 32 class 1 ATM-and IR-induced upregu-

lated genes (Table S3-D). Twenty of these genes encoded major

DNA replication and HR repair proteins, that, except for a few,

harbor an E2F consensus motif or have S-phase expression [117].

The negative IR-induced regulation of DNA synthesis and S-

phase genes (CYCA3;2, 8 histones, MCM4, RPA, HMGB6,

BARD1) shows that DNA damage checkpoints selectively

counteract S-phase cell cycle checkpoints, resulting in dual
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regulation of the S-phase TF E2Fa/DPA activity. Together, these

data indicate that the large range of DNA lesions leads to a strong

reorientation of chromatin metabolism. The incorrect expression

of class 1 genes in atm and weakly atr suggests that DNA damage is

signaled by the kinases.

ATM controls IR- induced upregulation of genes

involved in cell reprogramming.
In the context of severe cell cycle delay accompanied by strong

DNA and chromatin metabolism, the concomitant up- and

downregulation of genes within each class illustrates the strong

reprogramming of cellular functions. Genes involved in trans-

lation, protein turnover and cellular trafficking, transcription, and

signaling demonstrate non-random changes (Fig. 7). Genes with

decreased expression were mainly involved in basic cellular

activities and the associated regulatory infrastructure, such as

RNA processing and splicing (fibrillarin, PNP1ase), translation

(eIFs, NOP56, RPSOB), morphogenesis (expansins, nodulins, cell

wall proteins), or essential metabolism genes, e.g., during nutrient-

induced reprogramming [118]. Similarly, downregulated genes

encoding TFs, a PP2C gene that is quickly downregulated by cold

stress, together with calnexin and a RhoGAP, which are pivotal

switches acting in Ca2+ signaling and the cytoskeleton during plant

tip growth [119,120], indicate general growth arrest. Concomi-

tantly, upregulated genes in class 2 included several genes that

have central roles in RNA metabolism (NMD3, ScENP1-like,

AtPAB8, EMBs), DNA repair, telomere biogenesis, cell signaling,

and gene expression, such as heterogeneous nuclear ribonucleo-

protein particles and RNA helicases (hDDX8-like, AtLOS4).

Accordingly, regulation of the translation apparatus and turnover

of proteins such as FKBPs, eIFs, proteases, and CHFR; and

regulatory components of the proteasome and the ubiquitylation

machinery (e.g., RCE2, ubiquitin ligases BRH1, KAKTUS,

HAKAI), 20 F-box proteins (e.g., SKIP2, FBX13 and 3, FLB6,

KELCH-F-box) indicated superimposed cell cycle and hormonal-

dependent responses. We identified ScDDI1-like, a UbL-UbA

protein involved in the MEC1/ATR-mediated turnover of an F-

box protein [121], hPSO4, or IBR-RINGs, indicating a regulation

of nucleic acid metabolism. Broad-spectrum TFs (TFIIs, CBF/NF-

Ys, TCPs/PCFs, NOTs) as well as stress-specific TFs were

identified accordingly (class 6). Notably, a repressor of pro-

liferation TCP4, and the activators AtTCP-20/PCF1 and

OsPCF2-like, which drive quantitative expression of CYCB1;1

and ribosomal proteins respectively [83,122], and of DNA

synthesis-related genes, likely identify part of TFs governing IR-

specific S-phase and DNA replication-associated transcription.

Furthermore, upregulation of AtPura, which physically interacts

with AtTCP20 and AtE2F [123] and controls the expression of G1

and S-phase genes (translation apparatus, RNR, TK), indicated

the IR-induced regulation of active E2F titration. WRKYs and

AP2s, which are the most abundant pathogen- and cold regulated

factors under the control of ICE1 [119], ICE1, ZnFs, and BTs,

were the major groups followed by developmental factors

(homeobox, NAM, SCARECROW-like, TOPLESS-RELATED,

HANABA TARANU-RELATED, MIZU-KUSSEI1, AGA-

MOUS-LIKE18), and hormone-responsive factors (EREB,

ARF2, BZR3, CRF6, ARGOS, AXR2, MASSUGU2) [124].

Uncharacterized TFs, such as the single predicted TFs with a LIM

(OsSF3-like) or a MIZ domain, identified new factors of the IR-

induced response [125]. Dehydration- and disease-responsive

genes were the most abundantly modulated stress induced-genes

(class 7), followed by high salt, wound, cold, or senescence-

associated genes. Notably, more than 10 HSP/DNAJs co-

chaperones might indicate a strong requirement of cell repair as

well as important TF translocators [126]. Other cell repair genes

and attenuators of cell death (AtBI1, BAG3, BAG7, autophagy8h,

NDP-kinase, NUDT7) were induced together with cell death

genes (ACD2, RCD1, VAD1, MCP1b) and might signify strong

Figure 7. Hallmark genes in IR-and ATM-mediated transcript profiling. IR induces DNA lesions resulting in different types of chromatin alterations
that also occur through genetic or physiologic disturbance. Examples of downregulated (italics) and upregulated genes (bold) in each functional class
(1–8) are shown. Examples of misregulated (up or down) genes (standard font) and constitutively deregulated genes (no arrow) in atm or atr. Genes
are extracted from Table S3-A.
doi:10.1371/journal.pone.0000430.g007
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cellular damage and links between hormone and stress signalling

after IR [127]. The most abundant group in class 8 encoded Ca2+

sensors (7 Ca2+-/CAM-binding proteins, CAM9, CDPK19,

CIPK11, and a new CIPK1-IP (ECT2) that relays the cytosolic

Ca2+ signals to the nucleus. Together with the induction of AOS-

transducers (ORG1, MAP3Ks, OXI1), and hormone- mediators

(RLKs, RCN1, RACK1), growth-related kinases (AtS6k2, IPK2a,

CK2B3, 4 PPC2) [128], confirmed the large reprogramming,

consistent with the nature of regulated TFs, and signaling or stress-

responsive genes. Several genes in both classes were constitutively

expressed in mutants, suggesting that IR as well as chromatin

defects regulate part of the cell cycle progression through calcium

signaling (Table S3-C) [129]. Together, the data indicated that

genes in all classes are required for essential functions character-

ized as cell development under general stress.

Specific gene expression in ATM-depleted mutants

reveals constitutive defects
Clusters K7 and K8 contained genes invariant in WT that were

modulated for usually less than 1 h post-IR in atm (Table S1.1).

Within hundreds of upregulated genes in cluster K7, we

distinguished two main sets of genes. One includes genes involved

in transcription and development such as the orthologue of

BLOCK in PROLIFERATION 1 (hBOP1), SMT1, ATHB5,

TCP1, AtCUL1, GRP23, or ankyrin repeat proteins, all implicated

in the evolution of key morphologic traits and functions [122,130].

The other group comprised many oxidative stress-related proteins

(AtPP2-A5, OZI1, LTV1, AtGPX6, AtMYBL2). Remarkably, the

upregulation of SpCDC5-like and SpPRP19/hPSO4-like [131],

both essential proteins for interstrand crosslink processing in

a specific error-prone recombinational repair pathway [132].

Early downregulated K8 genes included uncharacterized genes

such as a DNA storekeeper protein, AtTRFL1, the acetyltransfer-

ase AtHAG4/hTIP60, an upstream stimulator of ATM activity.

Notably, they included SCL genes involved in specification and

maintenance of the QC stem cells, ARRs, pinoid-BP, and PP2A

phosphatases (RCN1, PP2AA2), and TANGLED1 homologue

ATN, which have a cardinal role in hormone-mediated growth

regulation as well as in the control of cell shape and plant

morphology [124,133]. Clusters M1 and M2 included genes with

constitutive expression defects in atm. M1 included uncharacter-

ized genes such as NOL1-PCNA/NOP2/sun family protein, and

a histone-like TF (CBF/NF-Y), similar to hNF-YB that pre-sets the

promoter architecture for access to other regulatory proteins, and

often associates with E2F to regulate transcription during the cell

cycle [134]. M2 genes displayed several nodulins, hormone

responsive/regulated and permease (AtPUP4, EXP1, IAAs,

CYCD3;3), PAS2, and PIN1AT, the depletion of which induces

premature mitotic entry and mitotic arrest in yeast [135]. Another

M2 hallmark was a F-box-TF jmjC-like, which is close to new

human chromatin modifiers and/or to a transcriptional repressor

of human CYCD1 [136,137]. Clusters K3 and M5, which largely

overlap (Fig. S5-A), included chromatin proteins (ARP4, SWIB,

SET, nucleosome assembly protein), but neither DNA 3R genes

nor cell cycle regulators, and were strongly enriched in RNA,

protein, and primary and secondary metabolism functions (Fig.

S5-B). This shows a bias towards functions required for cell and

organ growth and polarity (HYD1, STE1, FROSTBITE1, KOR,

HSC70s, KAK, ZW19, MERI-5, RCD1). Altogether these

expression patterns identify additional key genes involved in the

developmental and signaling pathways that were revealed by

increasing the number of experiments and comparing the status of

transcription before and after IR in WT and mutants. Further-

more, these patterns indicate that ATM does not directly control

other signaling pathways that are required for a correct transcrip-

tional response to IR.

ATR weakly controls early IR-induced ATM-

dependent gene expression
Cluster R2 displayed 139 highly upregulated genes in WT and atr

that mainly overlap with ATM-regulated clusters M3-M7 (Fig. 5-

E). Twenty of these genes had attenuated expression with high

statistical significance, therefore exhibiting a pattern similar to that

of clusters R3 and R4 and suggesting that the maximal level of

gene expression reached in WT somehow requires the combined

action of both kinases in the early response to IR. Hallmark genes

with such a pattern (’’LOW’’ in Table S3-B) included RAD51,

RAD21, TRFL10, NDHII, FHA-and BRCT-proteins, NRAMP3,

ARAC7, USO1, AtGR1, AN1-like, and bHLH109 TFs, CIP7,

and 4 proteins without domain features. There were 18 other

genes with lower ratios in WT (R2-R4, « low »in Table S3-B) than

in clusters M3–M7, and 11 genes that overlapped (Table S3-A).

These genes encode dehydrins, LEA proteins, the TF IMB1 (seed

imbibition protein 1) whose mutation causes upregulation in

transposons and transposases [138], and a RNA helicase

(EMB3011), suggesting a bias towards dessication-associated

chromatin changes. In addition, they include sensors of topologic

changes of chromatin (TSA1-like, SGO1-like, DELANGIN,

PARP1), and regulators of chromatin structure (AtASSH1,

ARP4, hCHMP2A-like), and notably an ARID-BRIGHT protein

(Cluster R1). Finally, while the expression of CYCB1;1 and KRP6

was hardly affected in atr, the impaired upregulation of the G1/S

factors (AtGCIPp29, GSPT1, GANP), and downregulation of

APC8 (cluster R6) indicated a slight effect of ATR on cell cycle-

related gene transcription at G1/S and G2/M, consistent with

a slightly altered cell-cycle arrest after IR in atr [47]. These data

indicate that ATR slightly complements ATM in the transcrip-

tional response to IR.

DISCUSSION
Genome-wide transcript profiling coupled with analysis of the

developmental features of atm and WT might help to reveal cell

functions and networks that are specific or critical to plant fate

after exposure to a sublethal dose of IR. As shown by CYCB1;1

protein changes in WT, most meristematic cells with an early

accumulation of CYCB1;1 lose the protein 24 h post-IR and

undergo accelerated differentiation, whereas in a subset of cells

located around the QC and initials, division remains blocked for

another couple of days prior to starting again. This results in

transient loss of the root transition zone and an auxin increase in

the vascular system. Consistent with organ growth scenarios [139],

this non-linear pattern, in contrast to the progressive pattern of cell

differentiation, suggests that titration of active regulators along the

root, which are normally required far from the stem cell area to

determine cell, tissue, and organ fate, might reach local critical

thresholds that determine either sustained cell division arrest, exit

towards non-canonical differentiation, or death. Atm seedlings

showed an early ectopic division of the QC and initials before

experiencing consumption of the meristem and massive cell

swelling up to the very root tip. The concomitant transcriptional

burst of several hundred genes lasted for approximately 3 h

following sublethal IR in WT, and is essentially IR-ATM-

mediated and weakly IR-ATR-mediated. This might be associated

with the mild IR-sensitivity of atr plants and to its weaker but

significant contribution to the occurrence of chromatin c-H2AX

foci compared to atm (1.2 for atr vs 10.5 per cell for atm)
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[47,48,140]. Both kinases contributed to the number of WT foci

(14 per cell). Experiments performed with alleles of the WS

ecotype of both mutants, at only one time-point post-IR and with

a different microarray procedure, indicated the same transcrip-

tional trend at least for the most upregulated transcript,

AtBRCA1. AtATM and AtATR have close structural similarities

to their human counterparts [47,141], and are expected to fulfil

similar activities as far as functions are conserved among species.

Gene expression depends on transcriptional activity and on

a variety of posttranscriptional events, including the initiation of

mRNA translation and RNA degradation. Indeed, comparing

microarray analyses of total and polysome-bound RNAs showed

that whereas IR does modify gene transcription, it affects

substantially more genes at the level of translation in human

astrocytes [60]. In that study, there were few, if any, genes affected

at both the transcriptional and translational levels, indicating that

the cells have enough pre-existing transcripts before IR and that

such controls balance the level of active factors. A larger overlap

between total and polysomal RNAs might have occurred in

astrocytes, because the comparison was performed with ratio

values greater than 1, a method that eliminated at least 90% of

UV- and IR-responsive genes in human cells, whereas changes

were linearly correlated to Northern blot intensities [59,142]. Such

posttranslational control occurs in Arabidopsis cell cultures after

sucrose starvation, resulting in a higher overlap between total and

polysomal- regulated RNAs [143]. This shows that transcript

profiles highly depend on the turnover rate of mRNA and on the

cycling and differentiation characteristics of cell lines [60,144], as

well as on the underlying pathways involved before and after

stress. The mRNAs whose polysome association was modified after

IR in human cells correlated with changes in the level of the

corresponding proteins [60]. They were not a random collection

but belonged to functional pathways such as cell cycle; cell death;

and DNA replication, recombination, and repair. Our data

showed similar components at the transcriptional level, consistent

with conserved functions between plants and other eukaryotes.

Indeed, slowing down transcription, translation, DNA synthesis,

division competence, and biogenesis of cell compounds was

concomitantly associated with increased expression of DNA

replication, recombination, and repair; cell cycle inhibitors;

regulators of RNA and translation; development and hormone

pathways; and stress metabolism or effectors and attenuators of

cell death. Numerous functional studies in human cells and yeast

have established the physical and biochemical interactions

between ATM and its targets, therefore the cellular functions

and pathways ATM controls are well established [20]. If we

consider gene homologies between plants and that mRNA

regulation in Arabidopsis reflects involvement of the correspond-

ing protein, our data provide important information for analyzing

ATM/ATR-mediated IR-induced transcription patterns in plants.

For example, the MCM helicase complex subunits are regulated to

control replication and HR repair in human cells [105]. Human

MCM4 is strongly inactivated by consecutive phosphorylation

involving DNA damage/ATR-CHK1 and cell cycle/CDK2

kinases after replication arrest [94], and theAtMCM4 transcript

is downregulated. Similarly, hATM phosphorylates MCM3 after

IR [106], and the AtMCM3 transcript is upregulated. Further-

more, several AtATM-mediated IR-upregulated genes encoded

orthologues of human HR proteins that are localized together

and/or have restricted interactions with ATM in DSBs flanking

chromatin (BRCA1) or with ATR in ssDNA microcompartments

of S/G2 chromatin (RAD51, BRCA1, RPA, RAD17, FANCD2,

BRCA2), or with the MCM complex when replication follows HR

[20,39,105,106]. Altogether, such data strongly indicate that plant

total and polysomal transcript profiling will help to identify

numerous regulators of the DNA damage response.

IR resets nuclear shuttling of chromatin modifiers

and TFs and mediators
In yeast, human cells, and Arabidopsis, the developmental and

environmental signals are detected by signalling molecules,

transcriptional activators and repressors that recruit HATs and

histone deacetylases, respectively. Changes in acetylation and

methylation of histones, promoters, and TF regulators lead to

transcriptional activation or repression by nuclear factors (NF-Y/

AT/E2, E2Fs) during cell life [126,134,145,146]. In human cells,

DNA damage involves direct ATM-mediated phosphorylation of

TFs and/or their regulators (p53, NF-kB, SP1-related retinoblas-

toma control proteins, STAT1, E2Fs) [24,147–151] as well as

repressor complexes such as HDACs-RB-PP1 [152]. In this

network, RB has a central role as it orchestrates proliferation,

apoptosis, cell cycle exit, and differentiation through interaction

with TFs, TF regulators, and chromatin modifiers in concert with

its multiple regulations by kinases (CDK) and acetylases (CBP/

GCN5) [153]. In Arabidopsis, TOPLESS, ABI-like, and AtARP4

illustrate the interplay of chromatin modifications and TF

shuttling [154–156]. After IR (Fig. 7), downregulated histone

deacetylases and upregulated GCN5 acetylase (HAT) and histone

and DNA methylases likely indicate chromatin decondensation for

loading of appropriate factors, driving new transcription patterns,

and cell fate [136,155]. Therefore, the function of IR-regulated

TFs, either proliferative or devoted to development, hormone-

mediated, cold and drought stress, and cell death [118,119,157],

as well as translocator DNAJs [126], likely indicates the extent of

cell reprogramming and of nuclear shuttling after IR. This holds

true for loading of DNA repair proteins that require specific

chromatin modifiers in other eukaryotes [118,119,157], therefore

indicating that class 1 genes illustrate the extent of DNA lesions

and chromatin changes triggered by IR. Together with IR-

regulation of mRNA functions (NMD3, AGO1), passive epigenetic

changes (replication dependent) might also be reset to an active

IR-mediated status, as cytosine and histone methylases (DRM1,

SET) and the histone deacetylase HDT1, which functions in

rRNA gene silencing, were regulated [158]. Therefore, misregu-

lated pre-existing chromatin modifiers and cofactors of TFs in

irradiated atm likely contributed to its failure to modulate

transcript levels after IR.

Both IR-treated and E2Fa-DPaOE plants and to a lesser extent

CAF-1 depleted plants, positively expressed ATM phosphorylation

substrates, which promote the S-phase checkpoint in irradiated

human cells. It is now established in human cells that deregulation

of E2F1 by RB inactivation or ectopic expression constitutes an

oncogenic stress that induces the accumulation of DSBs, elevates

the expression of genes involved in the response to genotoxic

stress, and triggers apoptosis [159–161]. Although E2F1 location

to MRN/cH2AX foci can be independent of ATM, ATM is

required to mediate the response to DSBs [159]. Constitutively

changing the chromatin assembly rate (CAF-1) also triggers DSBs

or sensitizes the cells to an increase in DSBs and results in genetic

instability in plants [162], yeast [163], and human cells [164]. This

might explain the similar transcription patterns observed after IR

and in mutants with a deregulated DNA synthesis rate and S-

phase regulation of transcription regarding DNA repair functions.

In the absence of clear transcriptional regulation of E2Fs, DPs,

and RB transcripts in our different samples (only DPa reached

a ratio of 0.5 in early irradiated ATM, data not shown), we

hypothesize that translational and/or posttranslational regulation
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of the pre-existing amounts of transcripts of the RB pathway genes

occurred. This likely resulted in a specific titration that drives an

E2Fa-DPaOE-mediated pattern, counteracted by slowing DNA

synthesis. This suggests that constitutive genetic or transient

physiologic (stress) contexts leading to upregulation of DNA repair

genes might share similar E2Fa deregulation that results in

chromatin changes associated with induction of the S-phase or

activation of DNA damage response proteins by AtATM.

The transcription burst followed two major trends of expression

in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/

or stochastic, as well as specific. The transcription burst followed

more subtle trends in atr as it mainly follows the WT pattern and

was poorly stochastic. These trends apparently correlate with the

extent of constitutive expression in untreated atm and atr, as

clusters M1 and M2 were large, whereas cluster R1 was single and

included a small set of genes (Fig. 7). Due to the cellular functions

represented in IR-transcript profiling, we hypothesize that IR

simultaneously triggers three major types of chromatin alterations:

DSB-type lesions, non-DSB-type lesions, and increased decon-

densation-type linked to active transcription (Figure 7). This

prompted us to hypothesize that genes for which expression was

IR-regulated and lost in atm (Fig. 7 left side) include proteins that (i)

were early phosphorylated by ATM or (ii) early regulated by

downstream effectors whose activity depends on early sensing by

ATM, and (iii) timely and/or physically linked to ATM activity

and/or to DSB sites, as they included almost exclusively cell cycle

and DNA repair genes. Recently reported examples included

WEE1 and CYCB1;1, which are regulated through ATM or

ATR-dependent pathways [73,165]. In a similar manner, genes

that required ATM activity to establish the correct direction and

timing of expression or were specifically regulated in atm (Fig.7

right side) were hypothesized to include targets regulated by other

posttranslational regulators acting more upstream or downstream

of ATM/ATR and/or further away from DSB sites, such as Tip60

and ARP4. This broad classification might help to uncover novel

or known hallmark plant pathways involved in the response to IR.

In an attempt to link development patterns observed in both

irradiated atm and WT to associate molecular pathways,

a schematic of the protein network that might interact at the

cellular level and/or at the organ level is shown in Figure 8.

Transcript profiling reveals putative links between

cell cycle, auxin, and developmental checkpoints

after DNA damage
Cell cycling arrest was largely illustrated by the decreased

expression of genes that are critical for the proper maintenance

of proliferative potential, developmental programs, and morpho-

genetic patterns. The positive regulation of KRP6 and CYCB1;1

accompanied the arrest together with numerous regulators such as

the novel Arabidopsis genes hCHFR-like and ScDDI-like (Fig. 8).

Ectopic expression of a dominant negative mutant of the G1/S

CYCD3 (CYCD3;1DOE) showed a CYCD3.1OE phenotype

(override of G1/S, increased S-G2 delay, downregulation of late

G2 genes) but a decreased expression of CYCA3.2 and histone H4,

and showed extensive death instead of vacuolization [77]. Such

phenotypes partially overlap with the IR response, leading us to

hypothesize that the transient increase in KRP6 might interact

with regulated forms of CYCD3s after DNA damage. Second, IR-

induced-and E2FaDPaOE-constitutive transcription profiles share

targets involved in cell division and growth (ATPK19, CYCB1;1)

and KRPs (KRP6 by IR, KRP2 and KRP3 in E2FaOE) [166,167],

suggesting a mechanism by which the G1-to-S and G2-to-M

transitions communicate, but are regulated by a DNA damage

checkpoint. Indeed, nondegradable CYCB1;1OE and KRPOE

plants exhibit a similar increase in cell size, featuring an IR-

induced phenotype, whereas plants overexpressing E2Fa,

CYCA3;2, or CYCD3;1 result in more cells [168]. In human cells,

CDK inhibitors include p21CIP1, p27KIP1, and INK4-type that

strongly control G1/S transition, while plants have only KIP-

related regulators. Human p21CIP1 is upregulated after IR [148]

and p27KIP1 is an atypical E2F1 target induced by deregulated

E2F1 and not only by serum activation [168]. In mice, knockout of

the p27KIP1 gene causes hyperplasia, suggesting that p27KIP1 is

involved in organ-size control and has a role as ‘an intrinsic timer’

in defining the extent of growth [169]. Assuming that similar

functions exist in plants, this opens the possibility for KRPs and

KRP6 in particular, to be regulated in a similar way after plant

E2Fs deregulation. The IR-induced upregulation of the repressor

of proliferation TCP4 and of TCP20, a quantitative activator of

CYCB1;1 and of ribosomal gene expression might indicate

a specific requirement for cell growth/repair components (sizer

elements) when cells stop dividing outside M phase. Therefore,

CYCB1;1 and KRP6 might respectively reveal critical ‘‘sizer and

timer’’ components of the cell that are triggered in concert with an

appropriate response to DNA damage when cells are transiently

arrested. As both interact with CDKs, such a combination might

help sustain the energy demand for repairing DNA and cellular

components as well as for anticipating cell growth by governing

the activity of CDK complexes until the cell cycle restarts. Cell size

is increased and growth is reduced in both nondegradable

CYCB1;1OE and KRPOE plants [92], similar to transient

impairment of development after IR (Fig. 3). This might be

related to the proliferation and growth components of the organ

size checkpoint (ANT) [169] that acts as a transcription regulator

[170]. Furthermore, the CYCB1;1 promoter harbors an auxin

response factor (ARF)-binding site that might connect auxin

titration to cell cycling and growth depending on the cell

competence for division/differentiation at the time of IR. After

IR, auxin increases in the columella and in the vascular system

following the upregulation of many genes that are essential for the

hormone response. Among them, ARF2 and ARGOS, which act

upstream of ANT, might represent links between cell and organ

size, cell, and organ differentiation, cell and organ fate (division,

survival, senescence, death). Such a role for ARF2 would explain

why the ARF2 phenotype hardly conforms to the canonical auxin

response model [171]. Furthermore, SCLs, TPR, HANL, and

AGL18, which are likely coregulators of cell polarity and identity

might act in concert with ANT-mediated polarity of the organ, as

well as with auxin-mediated pathways and cell cycle activity

through the RB pathway [73,165]. Cell death and cell repair

pathways might also be related to cell cycle and DNA repair

through regulators of SCF complexes and co-chaperones, or

transcriptional factors such as MIZ, involved in apoptosis in

human cells [125]. Cell death in provascular cells is accompanied

by an auxin increase after IR. Interestingly, WEE1 kinase is

expressed in such cells and in columella initials after replication

block [90]. This suggests a putative link between auxin and cell

lineage fate after IR, and a determinant role of kinases and

phosphatases that mediate the auxin response or regulate cell cycle

that were found in the IR transcription profiles. In addition,

CYCD3;1DOE, WEE1OE, PAS2OE, and KRP2OE plants tend to

limit endoreplication, and show different levels of cell enlargement

(WEE1, KRP2), suggesting that size and ploidy are not correlated,

in contrast to E2Fa-DPaOE plants that have increased endor-

eplicated cells. The transcriptional signature that transiently

mimics overexpression of such genes rather argues in favor of

a limited endoreplication, as E2FaDPaOE targets of DNA
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replication were decreasing after IR. To this point, if H2B-YFP

indicated premature cell differentiation and/or death (Fig. 1),

other markers are required to reach definitive conclusion. Previous

reports showed that IR–induced endoreplication was low in the

roots compared to cotyledons and hypocotyls [63], and that roots

underwent either G1/S or S/G2 arrest depending on the mutant

(lig4 vs ercc1). The experimental set up, however, was different than

ours (lethal doses on WT Landsberg ecotype imbibed seeds vs

sublethal dose on 4-day old Col-0 seedlings in the present study),

preventing a direct comparison. Together, these data indicate that

the internal titration of activated cell cycle checkpoints, hormones,

and developmental factors, which determine cell competence

towards stemness, division, and differentiation are decisive for

organ survival following IR.

Does AtATM promote HR repair through cell cycle

control?
After acute sublethal IR of division-active seedlings, our results

and those reported recently [140] suggest that HR genes are

essentially induced compared to NHEJ genes (several 10’s - vs 2-

fold), indicating a transient increase in HR repair, consistent with

the S-G2 delay visualized by CYCB1;1. In the budding yeast, HR

has a dominant role in virtually every type of DSB repair, but is

not dependent on DNA replication or the presence of duplicated

chromatids, but rather on Clb-CDK activity, which is required to

carry out end resection, one of the earliest stages of the HR process

[172,173]. This was consistent with the absence of a clear

relationship between the expression kinetics of these genes in

response to IR and their regulation during the cell cycle, although

many of the IR-induced genes are also regulated during the cell

cycle [174]. Mammalian cell types have a different constitutive

balance in HR and NHEJ efficiencies [108]. For example, mouse

embryonic stem cells tend towards HR, while primary cells tend

towards NHEJ. Vertebrate NHEJ-deficient ku70 cells are ex-

tremely IR-sensitive in the G1 and early S phases, and HR-

deficient rad54 cells show a relatively flat IR sensitivity pattern, and

are IR-sensitive only during the late S to G2 phases [108]. This

indicated that NHEJ is the major machinery for DSB repair in the

G1 phase, while HR begins to function (in addition to NHEJ) in

Figure 8. Hypothetical network of IR-regulated functions involved in development after sublethal IR. IR-ATM-mediated transcription of hallmark
genes might link to the IR-inducedphenotypes of WT and atm (Fig. 1–3, red). Cell cycle is severely delayed after activating ATM-mediated DNA
damage checkpoints by numerous inhibitors and regulators of proliferation. Cell growth and repair is enabled by upregulation of KRP6 and CYCB1;1,
which regulate specific activities of CDKs. Transcriptional, translational, and/or posttranslational regulation of E2F-DPs and other TFs (cell death hMIZ-
like, proliferation TCP20/TCP4), hormone (auxin)-responsive groups (ANT, ARGOS, ARF2, AXR2), development group (e.g., TOPLESS, SCARECROW) in
coordination with similar regulation of chromatin modifiers results in specific transcription IR- and S-phase specific patterns. Translesion synthesis,
replication, and HR genes indicate an increase in replication HR repair activity. At the organ level, an increase in auxin is associated with disturbance
of the whole hormones titration, cell death in the provascular system, and development patterns. Dashed arrows indicate putative links. Except for
the group that includes histones, only upregulated genes are shown.
doi:10.1371/journal.pone.0000430.g008
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the late S to G2 phases, and accordingly confers IR-resistance to

the cells in the G2 phase (WT human cells acquire ionizing

radiation-resistance as they proceed through S-phase). Moreover,

in human cells defective in G1/S arrest, some of the DSBs

produced in G1 and left unrepaired by XRCC4-dependent NHEJ

can be processed by HR, but only in late S/G2 [175]. In

Arabidopsis, lig4 mutants arrested at G1 after IR while ercc1

mutants arrested at G2 and were slightly less IR sensitive and

more sensitive than lig4 mutants to UV-B and to the DNA ICL-

inducing agent, mitomycin C [62,63], likely consistent with the

differential use of NHEJ and HR in mammals at those phases.

Whether ERCC1 is involved in HR repair of ICL-induced DSB at

S-G2 in Arabidopsis like in mouse ES cells [176] is, however, still

unknown. Arabidopsis CAF-1 constitutively express HR genes,

display S-phase delay, and show enhanced HR and cell death, due

to increased DSBs [58,162,177,178]. Furthermore, HR frequen-

cies and RAD51 expression were naturally higher compared to

KU70 in 4- d- old WT seedlings [179], indicating that HR is more

predominant in division active tissues and that both mechanisms

can compete towards resected ends that naturally occur during

replication. Our results indicate that NHEJ genes are expressed

throughout the cell cycle, while HR genes are S-phase dependent.

This also suggests that IR transcription profiles mainly include

oscillating genes making HR and NHEJ rather dependent on

CDK/CYC activity following ATM and ATR recruitment to

DSB sites, as observed in yeast and human cells [34–37]. This is

consistent with resetting of the cell cycle after DNA damage and

the transient burst in transcript changes followed by longer

posttranslational regulation (CYCB1.1). In human AT-cells, 90%

of DSBs are repaired by NHEJ, which appears to be ATM-

independent [27,180]. In Arabidopsis, proficiency of non-HR

repair in atm is supported by the fact that atm is less sensitive to IR

than is Ku80 [140], and is also able to induce LIG4 after IR but

later than in WT. In addition, LIG4, KU70, KU80, and RAD50, are

constitutively higher in atm (D. Camescasse & A.F. Tissier,

personal communication). Therefore, the competition of NHEJ/

HR towards resected ends is likely in favor of Ku-dependent

NHEJ before IR in atm. This might be partially related to the lost

regulation of PAS2 as untreated atm seedlings cycle slightly more

quickly than WT [46]. These findings suggest that chromatin

metabolism and cell cycling characteristics in atm are quite

different from those in WT, consistent with the stochastic

occurrence of misregulated clusters of genes (Fig. 7). Therefore,

the hypersensitivity to DNA damage of NHEJ- proficient atm

might originate first from cell cycle checkpoint abrogation,

enabling cells to divide before complete repair than from DNA

repair deficiency per se. Briefly, if lig4 can be arrested by ATM

activated checkpoints, atm cells can continue cycling using NHEJ.

The ectopic division of QC and initials and lateral root initiation

at a time when WT is arrested might prevent compensating for

IR-DSB repair by both proficient NHEJ and residual HR (RAD51

in cluster K1 is weakly expressed) therefore enabling cell death or

genetic instability as in AT-cells. Furthermore, irradiated atm

initiated the growth of root primordial cells, although improperly

positioned, indicating that cells cycle in response to the mitogenic

signals independently of the development status, locating DNA

damage and cell cycle checkpoints upstream. They quickly stop

dividing, however, likely because of the persistence of residual

breaks that might require ATM (Artemis-like) to be repaired, as

even lig4 cells, but not AT-cells, substantially recover after IR

[181,182]. In Allium, root tips irradiated with 40Gy X-rays

underwent a caffeine-dependent G2 arrest, but IR did not prevent

aberrant mitotic figures and apoptosis from occurring together

with DNA contents lower than 2C, that is, a mitotic catastrophe

[71]. Therefore, the stringency of plant checkpoints is likely lower

compared to human, as already reported [61,183], a feature that

might be at least partially related to the absence of human INK4-

type restricting inhibitors in plants. Therefore, the constitutive

increase of HR genes associated with S-phase delay in mutants

such as CAF-1, tebichi, E2Fa-DPaOE or their transient increase

during cell life, brings into question the role of ATM, when the

level of DSBs increases due to deregulated functions and might

cause genetic instability. This also underscores the importance of

proficiency of DNA damage and cell cycle checkpoints in plant

developmental phenotypes. To address this point, it would be

helpful to compare early phenotypes of QC and initials in

irradiated DNA repair- deficient mutants [62,63].

Putative links between development failure and

transcription in irradiated atm
The ‘‘protection’’ of initials in irradiated WT followed by the

restart of meristem division several days post-IR was opposite the

mixed pattern of dividing/differentiating stem cells and QC that

occurred 1 d post-IR and preceded meristem consumption in

irradiated atm. At the same time, the WT transcriptional burst was

absent or inverse in atm. WEE1 kinase regulates basal transcription

through CDKD inhibition [184] and controls CDKA;1 activity by

ATM (ATR)-mediated regulation [90]. Thus, the absence of

WEE1 regulation might explain part of the radiation-resistant

transcription of atm. Another possibility is that the radiation-

resistant transcription of atm is caused by ATM-mediated deficient

disruption of the histone modifiers/TFs/regulators chromatin

complexes required for appropriate transcription after IR (Fig. 9).

The failure of atm to regulate hormone-responsive genes and

especially PIN4 might increase auxin levels in atm root tips due to

the absence of a focused PIN4-driven auxin sink in the first

columella tier [185], and therefore influence stem cell fate.

Determining whether such auxin-responsive genes and WEE1

kinase, which is specifically induced in the vascular system and is

located close to the QC after replication block [90], are co-

regulated after IR would help to identify morphogenetic pathways.

Clearly, ATR, mitogen activated protein kinases, and CDKs and

numerous IR-upregulated kinases not yet characterized might also

regulate such a network, as in human cells [22,37]. Indeed,

AtATR drives the stabilization of CYCB1;1 in the atm and WT

meristematic zone after IR [140], indicating that proteins existing

at the time of IR are immediately regulated, and likely explains the

similarity of prematurely differentiated cells in WT and atm. What

happens in stem cells, however, is still unknown. The mRNA levels

of several G1, but not G2, regulators change in scr mutants,

indicating a peculiar role of G1 regulators in the RBR/SCR-

mediated pathway that controls stem cell maintenance [73].

CDKF1;1, which strongly regulates the cell cycle [184], might also

be misregulated in atm stem cells after IR in a manner similar to

that observed when CDKF;1 ectopic expression leads to a re-

duction in CDKA;1 activity and differentiation of columella stem

cells [74]. CDKF;1 is a functional homologue of yeast CAK1 that

regulates CDC28/CDK activity during meiotic differentiation

[186] through the kinase IME2/PIT1, which stabilizes Sic1p, the

functional orthologue of human p27KIP1 [187]. In humans, the G0

checkpoint nuclear kinase DYRK1 has a critical role in growth

arrest, transcription, and cell survival, including stabilization of

p27KIP1, destabilization of CYCD1, and relocation of HDAC/TF

and p21CIP1 [188]. Among the IR-regulated kinases, the male

germ cell-associated kinase (MAK), AtMHK, was the only kinase

containing the characteristic TEY motif that essentially aligns with

the T-loop of SpPIT1 (data not shown) among 10 MAK/ICK
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sequences from humans and yeasts [189], and OsYakA-like was

the only DYRK-type kinase [188]. AtMHK is an orthologue of the

Cdc2-related BvCRK2 that is implicated in cell division and the

early events of differentiation, when CDC2 is expressed in the

majority of cells in the developing organ. Because DYRK-and

MAK-type kinases are involved in crucial steps of tissue

development, it is possible that stabilization/regulation of

KRP6/KRPs by AtMHK and/or YakA occurs after DNA

damage in arrested cells. This would help prevent a mixed

division and differentiation status of the stem cells before complete

repair, as WT was arrested while atm was dividing (Fig. 9). Also,

this could partially explain why columella stem cells differentiated

after CDKF;1 ectopic expression [74]. Finally, CDKA;1 and RBR

pathways affect male gametogenesis and female gametophytes,

respectively, in Arabidopsis [88]. Because atm, but not atr, is

partially impaired in meiosis and atm atr is fully sterile [46,47],

investigating the roles of AtATM, AtATR, AtMHK, YakA, and

similar pathways in meiotic cells and somatic cells after DNA

damage would help to elucidate the crosstalk between cell cycle

and DNA damage checkpoints activated by genotoxins and IR or

by natural DNA lesions. As KRP and SCR activities act upstream

of the RBR pathway, future studies will help to decipher the roles

of AtATM in concert with the TOPLESS, SCARECROW,

PLETHORA, and SHORT ROOT pathways in cell stem fate

when there is increased DNA damage [73,133].

During revision of the manuscript, De Schütter et al. [90]

reported ATM/ATR-mediated regulation of WEE1 kinase, and

Culligan et al. [140] reported a similar transcriptional response and

demonstrated that CYCB1;1-GUS increased while CYCB1;2-

GUS decreased after IR, consistent with the transcriptional

pattern we observed here. CYCB1;1 stability was ATR-mediated,

showing that posttranslational and/or translational regulation of

pre-existing proteins/mRNAs occurred in both atm and WT.

These data are highly complementary.

MATERIAL AND METHODS

Tissue preparation and confocal laser scanning

microscopy
For propidium iodide (PI) staining of live root cell walls, seedlings

were submerged in 5 mg/L PI for 1 min and rinsed; the roots

were then mounted on slides in water. For pseudo-Schiff staining

of roots, seedlings were fixed in a 50% methanol, 10% acetic acid

solution and kept overnight at 4uC, washed twice in water, and

treated with 1% periodic acid for 30 min at room temperature.

Seedlings were washed again and incubated for 2 h in fresh

Schiff’s reagent solution (1.9 g sodium metabisulphite, 97 mL

water, and 3 mL 5N HCl) supplemented with 20 mg/mL PI.

Seedlings were then washed again and cleared for 1 h in a chloral

hydrate solution (80 g in 30 mL water). Finally, roots were cut and

mounted on slides in Hoyer’s solution (30 g gum arabic, 200 g

chloral hydrate, 20 g glycerol in 50 mL water) clarified by

centrifugation. For viability staining of root tip cells, seedlings

were incubated 30 min in a 5 mg/mL fresh fluorescein diacetate

(FDA) solution, washed with water and incubated 3 min in

a 20 mg/mL PI solution. Confocal laser scanning microscopy was

performed using an Olympus Fluoview microscope equipped with

an argon-HeNe laser. Excitation and emission wavelengths were

488 nm and 505–530 nm, respectively, for FDA, GFP, and YFP,

and those for PI were 543 nm and 585 nm, respectively. Binocular

imaging of CYCB1.1-GFP in roots was performed directly in the

culture Petri dish using a stereomicroscope (Leica MZFLIII,

Figure 9. Putative hallmark regulation steps in stem cell maintenance and transcription response after IR. After IR, both the CDKF;1 pathway and
WEE1 are regulated leading to inactive CDKA;1. WEE1, in addition to halting the basal transcription while disrupting in particular HDT/RBR/E2F
complexes might specifically drive appropriate transcription as in human cells [152]; both are mediated by ATM. In addition, CDKF;1 is possibly
deregulated, resulting in CDKA;1 inactivation. This might be promoted by stabilizing KRP6 by kinases, such as the AtMHK. Only KRP6 was upregulated
after IR, however other KRPs might be involved. KRP6 might interact with CYCD3s or CYCD2-CDKs. In irradiated atm, transcription control might be
lost due to misegulation of WEE1 and RBR/HDT and division of stem cells (white arrows) is promoted by deregulation of stem cell-maintaining RBR
pathway, in addition to PAS2 deregulation and CDKF;1 misregulation. A competition between KRP/CYC/CDK and other regulators in stem cells might
also lead to the differentiation of stem cells (green arrows) through ATM-dependent and independent (ATR, others) regulation of pre-existing factors
at the time of IR [140]. After ectopic division due to checkpoint abrogation, atm stem cells accumulated high amounts of unrepaired DNA and/or
small amounts of DNA lesions that require ATM-Artemis-related DNA repair functions resulting in meristem consumption similar to irradiated human
ataxia telangiectasia-cells. Dashed arrows indicate unknown regulators or pathways. Other regulators shown in Fig. 7 were not shown and images are
extracted from Fig. 2.
doi:10.1371/journal.pone.0000430.g009

ATM-Mediated Plant Responses

PLoS ONE | www.plosone.org 16 May 2007 | Issue 5 | e430



Germany) and a Spot Advanced version 4.0.1 (Diagnostics

Instruments Inc, Sterling Heights, MI) for image acquisition.

Image processing was completed using Photoshop 7.0 (Adobe, San

Jose, CA).

Seedling culture and irradiation, mutant lines, and

total RNA extraction
Seedlings were cultured in vivo in Petri dishes as described pre-

viously[54]. Wild-type, atm22/2 (atm, Salk-6953), and atr22/2

mutants (atr, Salk 32841) were in ecotype Col-0 [46,47]. Histone

H2B::YFP, CYCB1;1::GFP, and DR5::GFP lines were kindly

provided by Dr. F. Berger and Dr. P. Doerner [64,66]. Surface

sterilized seeds (80) were sown in two rows per Petri dish,

vernalized 2 d at 4uC, vertically grown with a 14-h photoperiod at

22uC (10 h dark at 18uC). Two hours after turning on the light in

the culture chamber, 4-d-old seedlings (developmental stage 0.7–1

according to [190]) were given a single dose of 100 Gray c-rays

with a 60Cobalt source (22 Gray min21). Control plants were

placed in the dark close to the IR platform. After IR, irradiated

and control seedlings were returned to the culture chamber for up

to 5 h, then harvested 0.75 h-, 1.5 h-, 3 h-, and 5 h after IR, and

immediately frozen in liquid nitrogen and stored at 280uC. Root

samples were harvested 1 h after IR by discarding the apical part

of the seedlings.

Transcriptome studies
The microarray analysis was performed at the Unité de Recherche

en Génomique Végétale (URGV), (UMR INRA 1165 - CNRS

8114) using the Complete Arabidopsis Transcriptome MicroArray

(CATMA) [191,192] containing 24 576 gene-specific tags (GSTs)

from Arabidopsis [193]. The spotting of the GST amplicons on

array slides and the array analysis process were previously

described [194]. Total RNA was extracted from 4 –d -old

seedlings or roots with Trizol (Invitrogen, Carlsbad, CA) according

to the manufacturer’s protocol and samples were hybridized as

shown in Figure 5. Each experiment was performed in duplicate.

For each comparison, one technical replication with fluorochrome

reversal was performed for each pool of RNA. RNA integrity was

checked with the Bioanalyzer from Agilent (Waldbroon, Ger-

many). cRNAs were produced from 2 mg of total RNA from each

sample with the Message Amp aRNA kit (Ambion, Austin, TX).

Then, 5 mg of cRNA was reverse transcribed with 300 U of

SuperScript II (Invitrogen) and cy3-dUTP or cy5-dUTP (NEN,

Boston, MA) for each slide. Samples were combined, purified, and

concentrated with YM30 Microcon columns (Millipore, Billerica,

MA). Slides were prehybridized for 1 h and hybridized overnight

at 42uC in 25% formamide. Slides were washed in 2X SSC+0.1%

SDS for 4 min, 1X SSC for 4 min, 0.2X SSC for 4 min, and

0.05X SSC for 1 min, and dried by centrifugation. Two

hybridizations (one dye-swap) were performed. The arrays were

scanned on a GenePix 4000A scanner (Axon Instruments, Foster

City, CA), and images analyzed by GenePix Pro 3.0 (Axon

Instruments).

Statistical analysis of microarray data
Experiments were designed in collaboration with the Statistics

team of the URGV. The statistical analysis was based on one dye-

swap (i.e., two arrays each containing 24 576 GSTs and 384

controls). The controls were used for assessing the quality of the

hybridizations, but were not included in the statistical tests or the

graphical representation of the results. For each array, the raw

data comprised the logarithm of median feature pixel intensity at

wavelengths of 635 nm (red) and 532 nm (green). No background

was subtracted. In the following description, log ratio refers to the

differential expression between two conditions; log2 (red/green) or

log2 (green/red), according to the experimental design. An array-

by-array normalization was performed to remove systematic

biases. First, we excluded spots that were considered badly formed

features. Then, we performed a global intensity-dependent

normalization using the LOESS procedure to correct for dye

bias. Finally, for each block, the log-ratio median calculated over

the values for the entire block was subtracted from each individual

log-ratio value to correct print tip effects on each metablock. To

determine differentially expressed genes, we performed a paired t-

test on the log ratios, based on the assumption that the variance of

the log-ratios was the same for all genes. Spots displaying extremes

of variance (too small or too large) were excluded. The raw P

values were adjusted by the Bonferroni method, which controls for

the Family Wise Error Rate. We used the Bonferroni method (with

a type I error equal to 5%, Bonferroni p-value#0.05) to control for

false positives due to multiple comparisons [195]. The data were

deposited in Array express according to the MIAME standards

(Accession number E-MEXP-780 (http://www.ebi.ac.uk/arrayex-

press/experiments/E-MEXP-780)).

Real-time quantitative PCR
Primers of genes of interest (Table S1-Primers) were designed

with Primer 3 (http://fokker.wi.mit.e-du/cgi-bin/primer3) and

checked with Amplify (http://engels.genetics.wisc.edu/amplify/)

before synthesis. Expression changes were calculated as described

in Lafarge & Montané [54].

Gene clustering
Excel tables containing genes with at least one statistically relevant

ratio (Bonferroni p-value#0.05) among seedling or root experi-

ments were provided by the URGV platform. Manual clustering

was performed using a color code that only tags ratios fulfilling the

Bonferroni criteria. K-means clustering was also performed using

all ratio-values regardless of their Bonferroni p-value with Genesis

software set with default parameters and run for 8 clusters. Images

were extracted from Genesis or Excel files with Capture version

1.3 and Aperçu version 3.0.8 (Apple Computer, Inc., Cupertino,

CA). Methodology of gene clustering for seedling and root

experiments is detailed in Fig. S3.

Transcriptome data compilation and Venn diagram

design
We created a complete list (Table S3-A) of genes from Tables S1

and S2. From this list, a tool developed using the php language

that allowed us to add data from the literature, extract sets of genes

based on specific criteria, generate intersections between sets, and

create input files for drawing Venn Diagrams that were designed

with the R software (The R Foundation for Statistical Computing

Version 2.2.1), and the LIMMA library (Linear Models for

Microarray Data) from the Bioconductor project (www.bio-

conductor.org/).

Gene classification into functional categories
Gene information other than that found in the TAIR database

(http://www.arabidopsis.org/) was imported from the SGD

(www.yeastgenome.org/) and NCBI (www.ncbi.nlm.nih.gov/)

databases. Searches for conserved protein domains (www.ebi.ac.

u-k/InterProScan/) and/or homology to genes from other

eukaryotes, as well as in the literature, were performed to help

identify novel genes and to help classify genes into functional
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categories. Classification of genes into 9 groups based on basic

macromolecular metabolism and cellular processes and/or

compartments was performed according to the rationale de-

veloped for Caenorhabditis elegans and classification of Arabidopsis

genes required for embryo development [196]. The functional

classes were: (1) DNA, chromosome and chromatin metabolism;

(2) RNA metabolism including splicing, processing, and RNA

binding; (3) protein synthesis, modification, and proteolysis,

including translation, folding, and ubiquitin proteasome system;

(4) metabolism including energy production, primary, and

secondary metabolism; (5) cell biology and cellular structure,

including cell cycle genes, cell receptors, cytoskeleton, cell wall

metabolism, molecule transport, protein trafficking, membrane

protein, vesicle regulation, and cell polarity; (6) gene specific

transcription, including transcription factors; (7) stress-induced

genes; (8) signalling pathways, including kinases and phosphatases

and uncharacterized hormone-responsive genes. The unknown

function class (9) included predicted proteins (i) whose mRNAs

hybridized with a single CATMA probe (clusters K1M-K8M,

M1M-M8M, R1M-R6M), (ii) and those with domains of unknown

function, and (iii) with no significant matches in any database.

SUPPORTING INFORMATION

Figure S1 Fluorescence micrographs of WT live root tips after

IR.

Found at: doi:10.1371/journal.pone.0000430.s001 (0.52 MB TIF)

Figure S2 Time-course of WT primary root growth after IR.

Found at: doi:10.1371/journal.pone.0000430.s002 (0.12 MB TIF)

Figure S3 Gene clustering.

Found at: doi:10.1371/journal.pone.0000430.s003 (0.42 MB

PDF)

Figure S4 Data validation by rt-qPCR

Found at: doi:10.1371/journal.pone.0000430.s004 (0.24 MB

PDF)

Figure S5 Overlap of K3 and M5 genes and functional classes

distribution.

Found at: doi:10.1371/journal.pone.0000430.s005 (0.25 MB

PDF)

Figure S6 General characteristics of radiomodulated genes in

roots and seedlings.

Found at: doi:10.1371/journal.pone.0000430.s006 (0.22 MB

PDF)

Table S1 Time-course of gene expression in wild type and atm

seedlings after IR.

Found at: doi:10.1371/journal.pone.0000430.s007 (0.66 MB

XLS)

Table S2 Radiomodulation of transcripts in WT, atm, and atr

roots.

Found at: doi:10.1371/journal.pone.0000430.s008 (0.80 MB

XLS)

Table S3 Complete list and expression characteristics of radio-

modulated genes in Arabidopsis WT, atm, and atr roots and

seedlings.

Found at: doi:10.1371/journal.pone.0000430.s009 (0.64 MB

XLS)
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